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Statement of problem studied. An investigation of hidden Markov models (HMMs) as a means of 

processing Ground Penetrating Radar signals for discrimination between anti-tank (AT) and anti-

personnel (AP) landmines and discrete clutter objects was conducted.  Hidden Markov models had been 

used successfully previously in AT landmine detection with GPR but had not been used as a discriminant 

between mines and clutter nor had they been used on AP mines.  Experiments were conducted on data 

collected at the JUXOCO calibration grid. 

 

Summary of the most important results. Continuous and discrete HMMs were trained and tested and 

evaluated on the grid using both the Baum-Welch and discriminative training algorithms.  Experimental 

results suggest that discriminative training algorithms should be used for training HMMs for landmine 

detection, fusion of continuous and discrete models provided improved performance,  and that, although 

HMMs with the existing feature sets perform well for detection of AT mines, new feature sets should be 

developed for discriminating between mines and clutter objects. 
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1. GPR System 

GPR data from the GEO-CENTERS Energy Focusing Ground Penetrating Radar (EFGPR) system were 

used in these experiments.  The EFGPR is a time-domain impulse radar system, which includes an array 

of antennas, a synchronous high-speed interface model, a GPS system, and a host computer for control 

and processing. It uses delayed signals in a wide multi-element array which focuses transmitted and 

received signals to locate targets in the soil. 

  

GEO-CENTERS developed several models of the EFGPR. The model used in this project is Model 401 

EFGPR.  Model 401 EFGPR is a portable, three-wheeled humanitarian de-mining system. It deploys 

Rolled Edge Transverse Electromagnetic (RETEM) antennas that increase in both gain and upper 

bandwidth, along with improvements in RF components to take advantage of the enhanced radar 

bandwidth.. It supports a single 1.5m, 6-antenna-pair-array to cover a 1m-detection swath. The center 

frequency of the EFGPR is 1.25GHZ.   The 401 EFGPR saves the GPR to disk for off-line analysis. 

 

A raster scan is generated every 5cm when the system advances. The scan is stored in 25 x 40 x 12 bit 

radar image format that represents a ground slice. The 25 pixels cross track represent 1m wide swath, and 

the 40 pixels represent the time or depth. Figure 1 is an illustration of a landmine signature. The down-

track direction is the direction of vehicle motion. The cross-track direction is represented by the variable 

x , the down-track direction by the variable , and the depth by the variable y z . 

 
Figure 1: An Illustration of Three-dimensional Landmine Signature 
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2. JUXOCO Site 

The GEO-CENTERs’ GPR collected data at a JUXOCO calibration grid in May 2001.  The grid has since 

been dismantled.  The calibration grid consisted of a 5m x 25m plot. The grid was divided into 5 lanes 

side by side, referred to as lanes A , B , , C D , and E . Each lane was 25m long and 1m wide. Each lane 

was uniformly divided into 25 grid squares. At the center of each square, a landmine or clutter was buried 

in various depths, or the square was left empty. In lane and lane , different types of clutter were 

buried at varies depths in the grid squares. The anti-personnel landmines were buried in some grid squares 

of Lane 

A C

B , while anti-tank landmines in lane . In lane D E , AP and AT landmines, landmine simulants 

and several clutter objects were buried in most of the squares. Table 1 is an enumeration of the objects 

buried in the grid. The weights of the metal clutter objects range from 0.41g to 306.00g. The non-metal 

clutter objects include woods, stones, a plastic spray paint cap, and a filled hole.   

 

Landmines/Landmine Simulants Objects 

AT Landmines AP Landmines 
Landmine 

Simulants 

Non-Metal 

Objects 
Metal Objects 

17 10 2 17 16 

29 33 

Table 1: Objects buried in the calibration grid.  The other grid squares contained nothing. 

3. Hidden Markov Models 

3.1.  HMM Description 

Hidden Markov models are stochastic models for stochastic processes that produce time sequences of 

random observations as a function of states. Transitions among the states are governed by a set of 

probabilities called transition probabilities. In a particular state, an output or observation can be generated 

according to the associated probability distribution. It is only the output, not the state, that is visible to an 

external observer. Therefore states are hidden or not observable to the outside.  Although HMMs are 

described elsewhere, e.g. [1-3], we provide some description here for completeness. 

The input to the HMM is the observation sequence, which is a sequence of feature vectors  

.  The number of states of the model is given by N, the individual states  by ToooO L21=

4 



},,,{ 21 NSSSS L= , and the current state by .  For a discrete HMM, the number of distinct observation 

symbols is M, and the individual symbols are given by V

tq

},,,{ 21 mvvv L= .  Every HMM has a  set of state 

transition probabilities  given by }{ ijaA =

{ tij qpa iS= + Nj ≤,

0≥ija ≤

}B =

|{ kt vop =)(j kb j≤ Mk ≤≤

)(kb j ∑
=

M

k
b

1
j≤ Mk ≤≤

N

Σ,=tj ob )(

jm

0 ∑
=

M

m

c
1

≤ Mk ≤

π { 1qpi ==π

),, πB

),(λ jmcA=

},|1 tj qS ==  i≤1  (1) 

Transition probabilities should satisfy the normal stochastic constraints, 

and ∑  ,1=ija Nji ≤,1  (2) 

A discrete HMM is has a set of discrete, conditional probability density functions, one for each 

state,which can be used to form the matrix , )({ kb j where  

},jt Sq == N≤1 , 1  (3) 

is the observation sequence. The following stochastic constraints must be satisfied 

0≥  and  =j k 1)( , N≤1 , 1 . (4) 

A continuous HMM uses continuous probability density functions. In this case we specify the 

parameters of the probability density function. Usually the probability density is approximated by a 

weighted sum of M Gaussian distributions ,  

∑
=

M

m
tjmjmjm oNc

1
),(µ , (5) 

Where the  are the mixture coefficients, jmc jmµ  the mean vectors, and jm∑  thecovariance matrices. 

The coefficients c  must satisfy the stochastic constraints 

≥jmc  and ,=jm 1 Nj≤1 , ≤1 . (6) 

The initial state distributions are given by }{ iπ= , where }i , 1 . Ni ≤≤

Therefore we can use the compact notation (λ A=  to denote an HMM with discrete probability 

distributions, and ,,, πµ jmjm Σ  to denote one with continuous densities.  
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The input to the HMM is the observation sequence, which is a sequence of feature vectors  

.   The output of an HMM is computed using the Viterbi algorithm to find the optimal state 

sequence and produces the quantity 

ToooO L21=

( )( )λ|,log *qOP  where q* represents the optimal state sequence [1].  

This quantity can be thought of as representing the probability of the observation sequence given the 

model. 

 

In the landmine detection problem, observation vectors are generated from GPR measurements as 

completely described in [2].  The states are associated with varying geometry between the GPR antennas 

and the object, as depicted in Figure 2.  Initially the system may be in a background state, then changes to 

a state in which the sensor receives returns from the mines but is not over the mine, the one in which it is 

over the mine, then moving away from the mine but still receiving returns from the mine, and finally in a 

background state again. 

B A C K G R O U N D
M IN E  S T A T E  1
M IN E  S T A T E  2
M IN E  S T A T E  3
B A C K G R O U N D

B A C K G R O U N D

M IN E  S T A T E  1

M I N E  S T A T E  2

M IN E  S T A T E  3

B A C K G R O U N D

 
Figure 2.  Depiction of a mine HMM for landmine detection.   

  There is one observation vector per channel per measurement.  Sequences of 15 observation vectors, 

corresponding to approximately 0.75 meter are used as inputs to the HMM.  For a given experiment, there 

are two models:  a mine model and a background model.  The output of the HMM landmine detection 

system is a confidence value given by 

 

( )( ) ( )( ) ( )
( )






=−=

background

e
backgrounde qOP

qOPqOPqOPC λ
λλλ |,

|,log|,log|,log *
min

*
*

min
*  (7) 
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3.2.  Training 

Training an HMM is the process of estimating the parameters of the HMM using a training set.  The 

standard method of training HMMs is the Baum-Welch method, which is well-described in the literature.  

In addition to Baum-Welch, it has been shown that Minimum Classification Error (MCE) training, also 

referred to as discriminative training, improves performance of HMMs for landmine detection [3].  These 

methods are described in the literature but are included here for completeness.  In addition, the MCE 

training for landmine detection discussed in the literature is for discrete HMMs only.  The results shown 

in this document are the first reported results using MCE training with continuous HMMs for landmine 

detection. 

 

3.2.1. Baum-Welch Training 

To solve the learning problem, Baum and his colleagues defined an auxiliary function [4]:  

( ) ( ) ( )( )∑=
q

qOpOqpQ λλλλ |,log,|,  (8) 

where λ  is the auxiliary variable corresponding to λ .  They also proved if the value of  ( )λλ,Q  

increases, then the value of  ( )λ|Op  also increases, i.e. 

( ) ( ) ( ) ( )λλλλλλ ||,, OpOpQQ ≥→≥  (9) 

 

Thus,  the problem of maximising ( )λ|Op  is replaced by maximizing ( )λλ,Q  with respect to λ .  Two 

auxiliary variables are defined for use in Baum-Welch training.   The first variable is defined as the 

probability of the tth observation being in state  and the (t+1)iS th observation being in state . Formally,  jS

( )λξ ,|,),( 1 OSqSqpji jtitt === +  (10) 

 

( )
( )λ

λ
ξ

|
|,,

),( 1

Op
OSqSqp

ji jtit
t

==
= +  (11) 

Using forward and backward variables this can be expressed as,  
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The second variable is a posteriori probability, which is the probability of the tth observation being in 

state : iS

( )λγ ,|)( OSqpi itt ==  (13) 

Using forward and backward variables we can rewrite equation (11) as,  

∑
=

= N

i
tt

tt
t

ii

ii
i

1
)()(

)()(
)(

βα
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γ  

(14) 

One can see that the relationship between )(itγ  and ),( jitξ  is given by,  

),()(
1

jii
N

j
tt ∑

=

= ξγ , Ni ≤≤1 , Mt ≤≤1  (15) 

In the Baum-Welch learning process, the parameters of a discrete HMM are updated in such a way to 

maximize )|( λOp . Assuming a starting model ),,( πλ BA= , one calculates the following so-called re-

estimation formulas  
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Reestimation formulas have been derived for to  the continuous density case [5][6]. 

 

3.2.2. Minimum Classification, or Discriminative, Training 

Minimum Classification Error (MCE) with Generalized Probabilistic Descent was first proposed by 

Juang and Katagiri [7] based on an earlier approach by Amari[8].  It has been widely applied to several 
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classifier structures, such as Multi-Layer Perceptrons [9], and Hidden Markov Models [7]. The essential 

aspect of this approach is to train the classifier structure so as to minimize the classification error rate 

using a gradient-based method together. However the error rate involves a discontinuous classification 

loss, since the classification is either correct or incorrect. This makes it difficult to apply gradient-based 

optimization techniques, which requires that the objective loss function is at least first-order 

differentiable. The strategy of MCE is to smooth the discontinuous classification loss function, while still 

staying close to the loss function and use a gradient-based adaptation method. 

 

Consider a set of observations , where  is from one of the{ NxxxxL ,,,, 321 L= } ix M classes , jC ,1=j  

, a classifier parameter set , M,,2 L Λ M discriminant functions ( )Λ;xg j , and the decision rule: 

)()( iCxC = , if ( ) ( )Λ=Λ ;max; xgxg jji  (19) 

A general misclassification measure for the class sample can be defined as [7]:  thk

( )
η

η

1

;
1

1);()( 







Λ

−
+Λ−= ∑

≠ij
jii xg

M
xgxd , (20) 

where η  is a positive number, controls the contribution of each misclassification towards the error metric.  

Note that when η  is large, the most confusable class contributes the most to the summation component. 

The cost function can be defined as [7]: 

( ) ( )( )xdx kkk ll =Λ; , (21) 

There are many choices for the loss l , for instance sigmoid function:  )( kk d

( ) θγ +−+
=

kdkd e
d

1
1

l  , 0>γ  (22) 
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Figure 3: Sigmoid Loss Function 

One can see that this loss function approximates an ideal binary loss function well and is continuous, 

which is suitable for gradient algorithms. A negative ( )xkd  indicates correct classification, and no loss is 

incurred; a positive  leads to a loss, which can be used to count classification error. Thus for a given 

sample 

( )xdk

x , the overall expected loss  is [7]: ( )ΛL

( ) ( ) ( ) ( )dxCxpxlCpL k
k

kk |,∑ ∫ Λ=Λ  ,  (23) 

Where  and  are the class  priori and conditional probabilities respectively.  ( kCp ) )( kCxp | a

 

Generalized Probabilistic Descent (GPD) is used to train HMMs to minimize the expected classification 

error, that is, to  minimize the overall expectation of theloss ( )ΛL . Since the distributions are unknown, 

the expected loss is not known. A solution to this difficulty is given by Amari’s Probabilistic Descent 

Theorem [8] which shows that for an infinite sequence of random samples {  and step size sequence ∞
=1}ttx

tε  that satisfies the conditions 

)i ∑
∞

=

∞→
1t

tε ,  (24) 

and  

)ii ∑
∞

=

∞<
1

2

t
tε ,  (25) 

adapting the system parameters according to 

( )ttkttt xU Λ∇−Λ=Λ + ,1 lε ,  (26) 
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where  denotes the parameters of  at , converges with a probability of one to a local minimum of 

. U  is a positive definite matrix which allows one to scale the learning rate differently for different 

model parameters. This is important when models are more sensitive to some parameters than others, as is 

the case for continuous HMMs.  Continuous HMMS are much more sensitive to the covariance 

parameters than the means and therefore different learning rates should be used . The simplest example 

for U  is the identity matrix.  

tΛ Λ t

( )ΛL

 

Equation 26 is used to update the parameters of the HMMs for discriminative training.  Specifically, the 

discriminant function are 

0 1
0

1 1
( , ) log ( ) log log ( )M M M

t t t t

T T
M M M

M M q q q q
t t

g b a bλ
−

= =

= + +∑ ∑O o M Mqo

M

 

for the mine model (the background model is similar).  In this expression, { } is the optimal 

state sequence found by the Viterbi algorithm.    

M
T

MM qqq ,,, 10 L

 

If O is a misclassified background sequence, the misclassification measure is: 

   d g      (27) ( ) ( , ) ( , )B M M Mλ g λ= −O O O

and the related loss function is: 

  * ( )
1( ( ))=

1 B BB B dd
e Bγ θ− ++ OOl .      (28) 

 If O is a misclassified mine sequence, the misclassification measure is: 

  ,     (29) ( ) ( , ) ( , )M B B Md g λ g λ= −O O O M

and the related loss function is: 

  * ( )
1( ( ))=

1 M MM M dd
e Mγ θ−+ OOl + .     (30) 

 The overall loss function is: 
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 In order to maintain the original HMM constraints, such as:  

   ∀i=1, N, and 
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the following transformations are introduced: 
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The mine and background models are then updated according to equation (26) 

 

4. Experimental Results 

4.1.  Experiments 

The EFGPR made four passes over the calibration grid with different gain settings.  We used two 

strategies for training and testing.  The first strategy involved training on one pass over the calibration 

grid and testing on another.  The second strategy involved a modified leave-one-out method, in which a 

given pass was iteratively divided into training and testing sets by leaving one sample out of the training 

set on each iteration.  Each sample is left out once and only once.  The feature sequences from each grid 

square were treat as one sample. Thus there are 125 samples in one data set.  For each iteration, the initial 

models were trained on the training subset. The trained models were tested on the testing subset.  The 

trained models serve as the initial models for the next run. The procedure would run for 125 times, until 

each sample was tested once and only once.  Finally, these models were tested on the other 3 passes.   

 

The first strategy has the advantage of different looks at the calibration lane and the disadvantage that 

different hardware settings were used to collect the data.  The second strategy has the advantage of using 

the same hardware settings and that each grid square was used as a test sample exactly once and was 

independent of the training data.  The first strategy will be referred to as the train one/test three strategy 
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and the second as the leave-one-out strategy.  Discrete and continuous HMMs were investigated as was 

the fusion of discrete and continuous HMMs. 

 

As noted above, the EFGPR collects a three-dimensional array of data corresponding to a physical region 

approximately one meter wide and the length of an entire lane.  The JUXOCO grid was designed for 

sensors to collect data only at the center of the grid.  Thus, the HMMs were run only on GPR data 

collected only near the center of each grid square.  More specifically, the HMMs were run on channel 

thirteen of the twenty five channels and at the three down-track positions determined to be closest to the 

center of the grid square.  Thus, three confidence values were produced for each grid square.  The average 

of the three values was used as the confidence that a mine was present in a given grid square. 

The mine and the background models were applied at each observation vector O , = 1, 2, 3, where 

denotes the grid square in the lane. Each model produced an output value for each observation 

vector. A confidence value was produced based on the difference of the output values for each 

observation vector: 

k
i i

k thk

( )( ) ( )( )background
k
ie

k
i

k
i qOPqOPC λλ |,log|,log min −= ,  (34) 

Where i = 1, 2, 3, k = 1, 2, …, 25. 

The average of the three confidence values was associated with the grid square. 
k
i

i

k CavgC
3,2,1=

= , = 1, 2, …, 25. k (35) 

Further, the values of were thresholded at various values to make the final decision.  kC

1=kD ,  if  C  > t, k

= 0, else.                  
(36) 

 

Algorithm evaluation is carried out using ROC curves.  A mine is detected, if  is 1 and there is a mine 

or mine simulant present in the grid square. A mine is missed, if  is 0 and there is a mine or mine 

simulant in the grid square. A false alarm is generated, if  is 1 and there is no mine or mine simulant in 

the grid square. A background is detected, if  is 0 and there is no mine or mine simulant in the grid 

square.  The probability of detection (PD) and the probability of false alarm (PFA) are computed for each 

value of the threshold, resulting in a ROC curve. PD is defined as the number of mines detected divided 

by the total number of mines and mine simulants in the grid, while PFA as the number of false alarms 

divided by the total number of grid squares without mine.   

kD
kD

kD
kD
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4.2.  Results 

4.2.1. Continuous HMM Results 

The train one/test three strategy was used to perform experiments with continuous HMMs. 

Continuous HMM models used in previous AT mine detection projects were used as the initial models. 

These models were trained on one pass of data and evaluated on the other three passes. A total of 87 mine 

observation vectors and 288 background/clutter observations were used for training.  The number of 

Gaussian mixture components in the models were varied. Continuous HMM results are shown in Figures 

4-6.  Since the models were tested on three different passes, the standard deviation in the Pd for each Pfa 

is shown also. 
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Figure 4: Results of Continuous HMM with 3 Gaussian Mixtures 
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Figure 5: Results of Continuous HMM with 4 Gaussian Mixtures 
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Figure 6: Results of Continuous HMM with 5 Gaussian Mixtures 
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4.2.2. DHMM Results 

Two experiments were conducted with DHMM models. The first experiment used the train one/test 

three strategy.   The second used the leave-one-out strategy.  The DHMM models were initialized using 

the SOFM strategy described in [2], and then trained on one data set, further tested on other three data 

sets. We did this experiment with different codebook sizes. The results are shown in the figures 7-9. 
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Figure7: Results of Discrete HMM with 25 Symbols in the Codebook using the train one/test three strategy. 
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Figure 8: Results of Discrete HMM with 50 Symbols in the Codebook using the train one/test three strategy. 
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Figure 9: Results of Discrete HMM with 100 Symbols in the Codebook using the train one/test three strategy. 

 

Discrete models were also trained with the leave-one-out strategy.  The results are shown below. 
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Figure10: Results of Discrete HMM with 25 Symbols in the Codebook using the leave-one-out strategy. 
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Figure 11: Results of Discrete HMM with 50 Symbols in the Codebook using the leave-one-out strategy. 
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Figure12: Results of Discrete HMM with 100 Symbols in the Codebook using the leave-one-out strategy. 
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4.2.3. Fusion Results 

We did a simple fusion to the outputs of CHMMs and DHMMs. The fusion was performed by 

averaging of the confidence values from each model for each grid square. The CHMM’s results are shown 

in Figure 8. The DHMM’s model is picked from the DHMM experiment associated with  Figure 10. The 

fusion results are illustrated in Figure 13. 
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Figure 13: Results of Fusing the Continuous and the Discrete HMM Compared to Those of the Continuous and the Discrete 

HMM respectively 

 

The fusion result performs better than that of each individual model. For example, at 100% and 90% 

PD, the PFA dropped by about ½ compared to the continuous model. And the continuous model 

performed a little better than the discrete model.  These results can be compared to methods reported on in 

[10] generated by a hand-held GPR on the JUXOCO grid.  The HMM with the EFGPR performs better 

than the baseline hand-held method that uses pointwise processing but not as well as the spatial 

processing method.  However, there are several differences in experimental design that make the 
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comparison less than conclusive.  For example, in [10] the positioning was much more precise, which is a 

significant issue in detection and discrimination of AP mines. 

5. Summary 

 

Continuous and discrete HMM algorithms were applied to GPR data acquired with the EFGPR system on 

the JUXOCO calibration grid.  The algorithms were trained using Baum-Welch and MCE training.  Two 

training strategies, the train one/test three and leave-one-out strategies were employed.  Discriminative 

training demonstrates improved performance over Baum-Welch training.  The best results were obtained 

with a fusion of continuous and discrete HMMs.  The system achieved Probabilities of Detection of 100% 

and 90% with a Probabilities of False Alarm of about 40% and 25% respectively.  These rates compare 

favorably with some published rates in the literature but not as well as the best.  We conclude that HMMs 

with the existing feature sets perform well for detection of AT mines but discrimination between mines 

and discrete clutter objects requires better feature sets. 
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